Paper 6 P2F Mark scheme

Question number	Answer	Additional guidance	Mark
1(a)(i)	In the solid box: regular arrangement and particles touching (1) In the liquid box: irregular arrangement and most particles touching (1) In the gas box: random and spaced (compared to liquid) (1)	ignore variation in particle size ignore arrows/lines indicating movement allow solid and liquid arrangements that do not fill the box	
			(3)

Question number	Answer	Mark
1(a)(ii)	С	(1)

Question number	Answer	Additional guidance	Mark
1(b)(i)	Substitution (1) 100 ÷ 13 Answer (1) 7.7 (g/cm ³)	award full marks for correct numerical answer without working allow 7.692 (g/cm ³)	(2)

Question number	Answer	Additional guidance	Mark
1(b)(ii)	 An answer that provides a description by making reference to: part fill a measuring cylinder with water and record the starting volume (1) completely immerse the stone in the water and record the final volume of water and stone (1) volume of stone = final volume (1) 	accept valid alternative methods, e.g. fill a displacement can until some water overflows/flows out of spout completely immerse the stone in the displacement can and collect the displaced water in a measuring cylinder volume of water displaced = volume of stone	(3)

Question number	Answer	Mark
2(a)(i)	A	(1)

Question number	Answer	Additional guidance	Mark
2(a)(ii)	 An answer that provides a description by making reference to: thermal/heat energy (1) dissipated in/transferred to air/surroundings (1) 	allow heat 'lost' to surroundings	(2)

Question number	Answer	Additional guidance	Mark
2(b)	 An explanation that combines identification – improvement of the experimental procedure (1 mark) and justification/reasoning which must be linked to the improvement (1 mark): place the beaker on an insulator (1) so this (material) will reduce rate of energy transfer (1) OR wrap the beaker in an insulator (1) so this (material) will reduce the rate of energy transfer (1) OR reduce the surface areas of the water (1) 	allow named insulator, e.g. cork mat put a lid on the beaker/make the beaker taller and narrower	
	 to give less evaporation (1) 		(2)

Question number	Answer	Additional guidance	Mark
2(c)	Rearrangement (1) $(l =) \frac{\Delta Q}{\Delta m}$ Substitution (1) $l = \frac{270000}{0.12}$	award full marks for correct numerical answer without working	
	Answer (1) 2 250 000 (J/kg °C)	2250 (J/kg °C) gains 2 marks as power of 10 error	(3)

Question number	Answer	Mark
3(a)(i)	С	(1)

Question number	Answer	Mark
3(a)(ii)	Vertical arrow, acting downward through the suitcase	(1)

Question number	Answer	Additional guidance	Mark
3(b)(i)	Substitution (1) (KE =) $\frac{1}{2} \times 85 \times 1.5^2$ Answer (1)	award full marks for correct numerical answer without working	
	96 (J)	allow 95.625 (J)	(2)

Question number	Answer	Additional guidance	Mark
3(b)(ii)	Rearrange (1) force = work done \div distance	accept rearrangement with values subst., i.e. (force) = $1200 \div 80$	
	Answer (1) (force) = 15 (N)	award full marks for correct numerical answer without working	(2)

Question number	Answer	Additional guidance	Mark
3(c)	An explanation that combines identification – understanding (1 mark) and reasoning/justification – understanding (1 mark):		
	 the work done is the same for walking and running (1) because work done depends on force and distance only, not time 	allow energy for work done because work done ÷ time is power	
	(1)		(2)

Question number	Answer	Additional guidance	Mark
3(d)	Rearrangement (1) (height) = change in GPE \div (mass $\times g$)	accept rearrangement with values, i.e. $(h) = 264 \div (12 \times 10)$ OR = 264 ÷ 120	
	Answer (1) 2.2 (m)	award full marks for correct numerical answer without working	(2)

Question number	Answer	Mark
4(a)(i)	В	(1)

Question number	Answer	Mark
4(a)(ii)	A	(1)

Question number	Answer	Mark
4(b)(i)	Substitution into correct equation (1) = $1.9 \times 10.0 \times 9.0$	
	Answer (1) 171 (J) (which is about 170 J)	
	answer must be shown to 3 s.f.	(2)

Question number	Answer	Additional guidance	Mark
4(b)(ii)	Rearrangement (1) (useful energy transferred) = efficiency × total energy	award full marks for correct numerical answer without working	
	supplied	accept (useful energy transferred) = 170×0.7	
	Substitution (1) = (70 × 170)÷100	OR = 171 × 0.7	
	Answer (1) 119 (J)	accept alternative answer from 171 (J), i.e. 120 (J)	(3)

PMT

169

Question number	Answer	Mark
4(c)	В	(1)

Question number	Answer	Mark
4(d)	 An explanation that combines identification – understanding (1 mark) and reasoning/justification – understanding (2 marks): the coil contains wires which have a resistance (1) and current in the wire is due to movement of electrons through (close-packed) lattice of positive ions (1) hence collisions between electrons and ions in the lattice transfer energy from electrons to the lattice (causing the temperature of the wires/coil to rise) (1) 	(3)

Question number	Answer	Additional guidance	Mark
5(a)(i)	 Any one reason from: the thermistor and the water are at the same temperature (1) large volume of water gives a steady temperature rise (1) 	accept idea that only small part of thermometer would be in contact with a thermistor in air accept difficult to control change in temperature of thermistor when heated in air	(1)

Question number	Answer	Additional guidance	Mark
5(a)(ii)	 Any one of the following developments to the procedure: add ice to increase lower limit of temperature range (1) use liquid with higher boiling point to increase upper limit of temperature range (1) 	accept named liquid with higher boiling point, e.g. oil	(1)

70

Question number	Answer	Additional guidance	Mark
5(b)	A comparison and contrast that must include at least one similarity and one difference from the following points to a maximum of three marks:		
	 Similarities resistance of both changes with temperature (1) both graphs show a non-linear relationship (1) data comparison, e.g. both have the same resistance at 80 °C (1) 		
	 Differences resistance of A decreases with temperature but resistance of B increases with temperature (1) for A, (largest slope/rate of change) is at lower temperature but for B, (largest slope/rate of change) is at higher temperature(s) (1) for B, resistance is constant below 50 °C but for A resistance is roughly constant above 60 °C (1) 	accept (smallest slope/rate of change) for A is at higher temperature but (smallest slope/rate of change) for B is at lower temperature	(3)

Question number	Indicative content	Mark
*5(c)	Answers will be credited according to candidate's deployment of knowledge and understanding of the material in relation to the qualities and skills outlined in the generic mark scheme. The indicative content below is not prescriptive and candidates are not required to include all the material which is indicated as relevant. Additional content included in the response must be scientific and relevant.	
	AO1 (6 marks)	
	 use of top pan balance to measure mass insulate beaker to reduce heat loss ammeter connected in series with heater voltmeter connected in parallel with heater use of E = I × V × t to determine energy supplied to the water accept use of joule-meter to measure energy supplied use of ΔE = m × c × Δθ to determine the specific heat capacity of the water measure p.d. across heater use stopwatch to measure time liquid is heating measure current in heater determine mass of water as mass of (beaker and water) – mass of beaker measure temperature before and after heating 	(6)

Level	Mark	Descriptor
	0	No awardable content.
Level 1	1-2	 Demonstrates elements of physics understanding, some of which is inaccurate. Understanding of scientific, enquiry, techniques and procedures lacks detail. (AO1) Presents a description which is not logically ordered and with significant gaps. (AO1)
Level 2	3-4	 Demonstrates physics understanding, which is mostly relevant but may include some inaccuracies. Understanding of scientific ideas, enquiry, techniques and procedures is not fully detailed and/or developed. (AO1) Presents a description of the procedure that has a structure which is mostly clear, coherent and logical with minor steps missing. (AO1)
Level 3	5-6	 Demonstrates accurate and relevant physics understanding throughout. Understanding of the scientific ideas, enquiry, techniques and procedures is detailed and fully developed. (AO1) Presents a description that has a well-developed structure which is clear, coherent and logical. (AO1)

Question number	Answer	Additional guidance	Mark
6(a)	Evidence that anomalous reading excluded (1)	accept 101.57 (÷5) for first mark	
	Answer (1) average length = 20.31 (mm)	accept 20.314 (mm)	(2)

Question number	Answer	Additional guidance	Mark
6(b)(i)	 Axes with linear scales that use more than half of each edge of the grid and labelled with units from table (1) All points correctly plotted to ± half a square (1) Single straight line passing through all points and the origin (1) 	allow 1 mark if only one plotting error and correct line drawn for points plotted	(3)

Question number	Answer	Additional guidance	Mark
6(b)(ii)	A comment that makes reference to the following points:		
	 (using table) idea that equal increments of force/weight/mass cause equal increments of extension (1) correct reference to figures in the table (1) 		
	OR (using graph) • the graph line is straight (1) • the graph line passes through the origin (1)		
	AND therefore the student's conclusion is correct (1)	last marking point can only be achieved if at least one of the other two marks is awarded	(3)

173

Question number	Answer	Additional guidance	Mark
6(c)	 An answer that combines points of interpretation/ evaluation to provide a logical description: above 37.5 N/4 mm there are large increases of extension for small increases in load (1) the maximum extension of the wire is about 16.5 mm before it breaks (1) 	accept extension is (much) greater for each 1 N increase in load above 37.5 N	
	 above 12 mm the wire keeps on extending when the load is reduced below 46 N (1) 		(3)